A Class of Hilbert Series and the Strong Lefschetz Property
نویسنده
چکیده
We determine the class of Hilbert series H so that if M is a finitely generated zero-dimensional R-graded module with the strong Lefschetz property, then M ⊗k k[y]/(y ) has the strong Lefschetz property for y an indeterminate and all positive integers m if and only if the Hilbert series of M is in H. Given two finite graded R-modules M and N with the strong Lefschetz property, we determine sufficient conditions in order that M ⊗k N has the strong Lefschetz property.
منابع مشابه
Hilbert Function and Betti Numbers of Algebras with Lefschetz Property of Order m
The authors T.Harima, J.C.Migliore, U.Nagel and J.Watanabe characterize in [8] the Hilbert function of algbebras with the Lefschetz property. We extend this characterization to algebras with the Lefschetz property m times. We also give upper bounds for the Betti numbers of Artinian algebras with a given Hilbert function and with the Lefschetz property m times and describe the cases in which the...
متن کاملSe p 20 06 The Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...
متن کامل5 S ep 2 00 6 The Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...
متن کاملIdeals of General Forms and the Ubiquity of the Weak Lefschetz Property
Let d1, . . . , dr be positive integers and let I = (F1, . . . , Fr) be an ideal generated by forms of degrees d1, . . . , dr, respectively, in a polynomial ring R with n variables. With no further information virtually nothing can be said about I, even if we add the assumption that R/I is Artinian. Our first object of study is the case where the Fi are chosen generally, subject only to the deg...
متن کاملThe Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [Wi]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Betti...
متن کامل